Existence of Solutions of a Class of Stochastic Volterra Integral Equations with Applications to Chemotherapy
نویسندگان
چکیده
In this paper we establish the existence of solutions of a more general class of stochastic integral equation of Volterra type. The main tools used here are the measure of noncompactness and the fixed point theorem of Darbo. The results generalize the results of Tsokos and Padgett [9] and Szynal and Wedrychowicz [7]. An application to a stochastic model arising in chemotherapy is discussed.
منابع مشابه
On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملExistence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem
In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.
متن کاملA wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کامل